栏目:思维模式 作者:佚名
人和人最大的不同,在于思维模式的不同。
编者按:人和人最大的不同在于思维模式的不同。本文作者在从事多年咨询工作的过程中,积累了 7 个对解决问题相当有用的思维模式。本文来自编译,希望对您有所启发。
“思维模式”(Thinking Models)与“心智模型”(mental models)不同,“思维模式”通常用于解决现实世界的业务问题。当我在工作中需要解决业务问题时,从未发现“心智模型”有多大用处。“心智模型”通常用来表示事物的工作方式。而另一方面,“思维模式”在解决问题方面有很大帮助。
作为一名战略顾问,我会帮助公司开发和推出在他们的小众市场占主导地位的新产品和服务。我尝试了很多工具,包括“设计思维”和启动加速程序等,虽然有些相当成功,但结果并不一致。而正是一些“思维模式”,才帮助我把成功率从 10%+ 提高到了 85%。
多年来,我收集了 7 种通用启发式思维模式,我发现它们在解决我在工作中遇到的几乎所有问题时,都是最有效的。我已将这些模型纳入我们的内部入职培训,帮助新员工迅速上手。
在本文中,我概述了这些思维模式是如何工作的,以及如何使用它们来解决企业家、股东、领导人和业务顾问在日常工作中可能遇到的所有业务问题或挑战。
1. 战略思维(Strategic Thinking):从正确的问题开始
“如果给我 1 个小时解答一道决定我生死的问题,我会花 55 分钟来弄清楚这道题到底是在问什么。一旦清楚了它到底在问什么,剩下的 5 分钟足够回答这个问题。”——阿尔伯特·爱因斯坦。(Albert Einstein)
许多书籍和学科都涉及到战略思考这个主题。然而,这里有一条经验法则可以帮助你将战略思维压缩为一句话:“问正确的问题。”
爱因斯坦是否说过这些话并不重要,但这个观点是成立的,因为战略思维就是提出正确的问题。当我们从顶级 MBA 商学院招聘战略顾问时,会筛选那些具有战略思考能力的候选人。我们通过检查他们在案例面试中解决问题时,是否能提出正确的问题,来做到这一点。在咨询行业,我们可以将这个词与“分析思维”互换使用,这也是我们首先衡量潜在候选人是否合适的方法。如果求职者在某一项面试中失败了,他们就会自动被拒绝。
接下来你会发现,问正确的问题对于解决问题的每一步都是至关重要的。
2. 抽象思维(Abstraction Thinking):建立层级
“人的思想自然倾向于过度简化问题,因为只有通过抽象和概括,人们才能发挥他微弱的能力,拥抱无限广阔宇宙中的一个微小部分。”——詹姆斯·乔治·弗雷泽(James Goerge Frazer),(The Magic Art and the Evolution of Kings)
“抽象思维”(Abstraction thinking)与“简化思维”(abstract thinking)不同,它听起来可能很抽象,但实际上并非如此。抽象思维可以帮助大脑建立一种“思维上可理解的”复杂问题的层次结构。
我第一次接触到“抽象思维”是在我作为工程师的早期,它经常被应用在复杂系统的层次表示中。例如,机器代码或固件是比应用软件和算法低几个层次的层。其他的例子还包括:
建筑:建筑的蓝图是比实际建筑更抽象的一个层次,旨在捕捉建筑的基本特征。
音乐:交响乐的音符是一个层次,乐器和管弦乐队是另一个层次。
其理念是,每一层都可以在没有上面的层的情况下存在,但需要下面的层发挥作用。
“抽象思维”在复杂或非线性系统中特别有用。正如我将在后面演示的那样,解决真实世界的业务问题,需要深入研究相关数据以支持假设的能力。在当今高度复杂的世界中,我们被大量数据淹没,高效地做到这一点是一个巨大的挑战。
当我们考虑数据时,可能谈论的是数十亿个数据点。对于一个人的心智能力来说,像十亿这样的数字是一种高度抽象的东西,因为大多数人都只能在心理上处理两位数或三位数的数字。“抽象思维”可以帮助人类理解抽象概念,理清细节层次,捕捉系统的相关特征。只关注对单个问题或子问题至关重要的内容,可以降低系统的复杂性。
3. 结构化思维(Structured Thinking):关注相关性和层次
“界限关乎建立结构,而结构对于建立任何繁荣的事物都是必不可少的。”——亨利·克劳德(Henry Cloud),《边界》(Boundaries)
我早年作为管理顾问学到的最有价值的技能之一就是:结构化思维。“结构化思维”的重要性可能不那么明显,但工作和生活的每个方面都是围绕着能够有效地结构化思维、计划和数据等的。这种思维需要相当多的经验来掌握。然而,有几个启发式和技术,它们可以被我们用来提高自己的结构化思维能力。
其中一个工具是问题图,也称为假设驱动方法。在问题图中,基于由主要问题衍生出的战略目标的问题和子问题,制定了一个假设。整个思考过程将由问题和假设主导,然后提出正确的问题,以树状结构(如下所示)来帮助证明假设。
从左到右依次为:问题——子问题——假设——关键问题——分析——数据(Image By Sam Schreim from bmh.ai)
上图中:源自战略目标或问题的主要问题→由主要问题衍生出来的不同次级问题→最佳猜测或假设→能为假设提供答案的问题→回答问题所需的分析→进行分析所需要的数据和此类数据的来源
最后一步是分析。在进行分析之前猜测假设似乎很有挑战性,但事实并非如此。其理念是,在假设中做出一系列正确的猜测,即使这些猜测(后来)可能被证明是错误的。
因此,问题图被称为假设驱动方法,因为假设是分析的指导。这也有助于测试实际的可行性。
这里有一个经验法则,要验证分析是否能证明和/或否定假设,只需检查分析的结果,问:So What?
如果你觉得有必要更深入地研究这个问题,你可以在芭芭拉·明托的国际畅销书《金字塔原理》中读到相关内容。《金字塔原理》更深入地探讨了这个概念。麦肯锡最初尝试将 MBA 应届毕业生的培训正规化,“结构化思维”就是其原则,后来明托在她的书中推广了这一做法。
4. 批判性思维(Critical Thinking):证据可靠吗?
“幸福的秘诀是把举证的责任推给不幸福”——罗伯特·布劳特(Robert Brault)
批判性思维是我们在高中学到的东西,一个我喜欢的话题,但我的许多同学讨厌它。然而,批判性思维是解决问题的思维链中重要的组成部分。
我们可以把“批判性思维”类比于法庭辩论。对于每一项指控,都要像控方那样行事。检察官有排除合理怀疑的“举证责任”。
因此,假设将与指控相似,而数据和分析将与法庭上的证据相似。
一般来说,反驳一项主张要比证明一项主张容易得多。所以当分析完成后,退一步,试着反驳它。只需要一个反例就可以证明这个假设不成立。
版权声明:文章观点仅代表作者观点,作为参考,不代表本站观点。部分文章来源于网络,如果网站中图片和文字侵犯了您的版权,请联系我们及时删除处理!转载本站内容,请注明转载网址、作者和出处,避免无谓的侵权纠纷。
相关推荐